Math 2050, HW 4 (due: 8 Nov)

- Q1. If $\sum_{i=1}^{\infty} a_n$ with $a_n > 0$ is convergent (a) show that $\sum_{n=1}^{\infty} a_n^3$ is convergent; (b) Is $\sum_{n=1}^{\infty} a_n^{1/3}$ necessarily convergent? Prove it or provides a counter-example; (c) If $b_n = \frac{1}{n} \sum_{i=1}^{n} a_i$, show that $\sum_{n=1}^{\infty} b_n$ is divergent. Q2. Show that
- - (a) $\lim_{x \to 1} \frac{x^3 2}{3 + x} = -\frac{1}{4};$ (b) $\lim_{x \to 0^+} x^{1/4} \cos(e^{1/x}) = 0.$

Q3. Show that $\lim_{x \to 1} \exp\left\{\frac{1}{\sqrt{x}-1}\right\}$ does not exist.

Q4. Let :
$$\mathbb{R} \to \mathbb{R}$$
 be a function such that $f(x+y) = f(x) + f(y)$ for all $x, y \in \mathbb{R}$. If f has a limit L at $x = 0$.

- (a) Show that L = 0;
- (b) Show that f has a limit at every $c \in \mathbb{R}$.